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Abstract. A neural circuit model is presented that consists of a hierarchy of nested clusters 
of neuron-like elements. Each hierarchical level of cluster organisation encodes a different 
level of distributed memory. Associative memory properties within and between levels are 
investigated numerically in simple versions of the model. The results may provide insight 
into mechanisms of memory storage, recall and loss in real neural circuits, such as those 
found in the cerebral cortex. 

1. Introduction 

Several recent neural circuit models of associative memory rely on the proposition 
that every neural element is effectively connected with every other element (Little 1974, 
Hopfield 1982, Amit et al 1985). When the connections are disordered and symmetric, 
as in the case of spin-glass systems, the models are characterised by complicated energy 
surfaces having dominant valleys, whose local minima can be identified with memory 
states. In the limit of infinitely large networks, the distribution of overlaps among 
these valleys has an ultrametric structure (MCzard et a1 1984, Rammal et al 1986). 
This interesting feature has been utilised to construct hierarchical models of memory 
capable of categorising information (Dotsenko 1985, Ioffe and Feigel’man 1986, Parga 
and Virasoro 1986, Toulouse et a1 1986, Cortes et al 1987, Gutfreund 1988). 

In contrast to models that possess fully interconnected geometries among similar 
neural elements, biological circuits, containing of the order of 1000 or more neurons, 
demonstrate considerable heterogeneity in the distribution of synaptic connections 
formed by individual neurons (Szentigothai 1977). Here it is not the case that every 
neuron is connected to every other neuron. The actual synaptic distributions depend, 
in part, upon the size and shape of the neuron types involved. While some types of 
neurons are confined to distances of less than 100 pm,  other types project over distances 
of several centimetres or more. Furthermore, the number of connections formed by 
different neuron types can be quite variable. 

Despite enormous diversity in the connection patterns associated with individual 
neurons, many neural circuits can be subdivided into essentially similar subcircuits, 
where each subcircuit contains many types of neurons. Even the cerebral cortex, which 
has long been considered the most complex and elusive of neural circuits, has basic 
design principles which give regularity to its subcircuits (Mountcastle 1978). Cortical 
subcircuits are arranged in a nested fashion, with clusters of subcircuits at the first 
level coalescing together to form subcircuits at the second level, which cluster to form 
third-level subcircuits, and so on. This nesting arrangement serves to link different 
and often widely separated regions of the cortex in a precise but distributed manner. 
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Subcircuits at the first level are organised into parallel columns, each containing of 
the order of 100 to 1OOOneurons. Several physiological responses, such as those 
occurring in columns in the visual cortex elicited by various optical stimuli, may be 
associated with each first-level subcircuit. The boundary relations, formed by the 
clustering of first- and higher-level subcircuits, are associated with successive levels of 
complex cortical behaviour that integrate and modify responses at lower levels. While 
this viewpoint oversimplifies the neurobiology of the cerebral cortex, it captures an 
important design strategy that has been largely overlooked in mathematical studies of 
neural circuits. 

In this paper, a hierarchical model of neural circuits is proposed based on the 
principle that regions of the cortex, and possibly other neural circuits as well, are 
topologically organised into nested distributed subcircuits. At the first level of organisa- 
tion, model clusters are composed of neural elements that are completely interconnected 
in an apparently disordered manner. Each of these first-level clusters, however, has 
content-addressable memory capabilities similar to those described in the model by 
Hopfield (1982). A memory state in a first-level cluster is taken to represent a single 
physiological response. The number of memory states in each cluster need not be 
large since only a limited number of responses is assumed to be associated with each 
first-level subcircuit in real systems. Emphasis in the model is therefore placed on the 
hierarchical nesting of the clusters and not on the optimal enhancement of memory 
storage capacity. 

First-level clusters in the model are linked together by subsets of elements, termed 
‘projection elements’, to form second-level clusters. Other subsets of projection ele- 
ments join second-level clusters to produce third-level clusters. Continuing in this 
manner, an r-level hierarchy of nested clusters of neural elements is constructed (figure 
1). Although the subsets of projection elements in each first-level cluster could, in 

Figure 1. Proposed hierarchy of neural clusters demonstrating three levels of organisation. 
Clusters at the first level contain neural elements (small dots) which are fully interconnected 
with each other, as shown in cluster 1. Certain linkages between first-level clusters form 
second-level clusters, such as cluster 2. Second-level clusters coalesce to create a cluster 
at the third level. Lines joining different first- and second-level clusters represent connec- 
tions formed by many, but not all, elements in different first-level clusters. 
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principle, be overlapping, it is assumed for modelling purposes that the subsets are 
mutually exclusive. In this way, r - 1 populations of projection elements are identified 
within each first-level cluster, such that each population establishes connections with 
elements in its own cluster and with elements in other clusters nested together at a 
unique level. This will be made clear in the mathematical formulation of the model. 
The first level at which two clusters are linked is a measure of what will be termed the 
‘functional distance’ separating them. This measure reflects the anatomical distance 
between two first-level subcircuits in real circuits, as well as any differences in the 
physiological responses associated with the subcircuits. 

As mentioned above, each first-level cluster has several first-level memory states. 
Second- and higher-level memory states consist of sets of correlated first-level memory 
states, the correlations being determined by the details of the intercluster Connections. 
The memory is hierarchical in the sense that lower-level memory states combine to 
create emergent and possibly degenerate higher-level memory states; higher-level states, 
in turn, categorise lower-level states. This hierarchical organisation of memory states 
corresponds to a multi-level ordering of physiological responses in real circuits. 

The hierarchical memory associated with the nesting of neural clusters arises 
naturally from design principles found in finite but complex neural circuits. The 
memory is to be distinguished from that based on the ultrametric properties of some 
infinite and fully interconnected models because the proposed layering of memory 
states arises from heterogeneity in the patterns of connections formed by different 
populations of elements. This feature breaks the symmetry associated with the complete 
connectivity of elements found in the ultrametric models. Moreover, there is no need 
in the present model to formulate abstract measures of memory state correlations that 
are necessary in the ultrametric models. These measures include the use of graded 
phase space overlaps among memory states (Ioffe and Feigel’man 1986, Parga and 
Virasoro 1986, Toulouse et a1 1986, Cortes et a1 1987, Gutfreund 1988) and the 
introduction of magnetisation-like quantities (Dotsenko 1985), whose justification and 
relevance to real neural circuits remains unclear. 

A hierarchical spin model of memory that does not explicitly rely on fully intercon- 
nected circuitry has been proposed by Dotsenko (1986). The model consists of a 
layered sequence of spin clusters, where the elements in each cluster are symmetrically 
connected with one another. Connections between the clusters converge multiple 
elements at one level to a single element at the next level. Memory states are hierarchi- 
cally arranged, based partially on the degree of coarse graining performed by individual 
elements at successive levels. This contrasts with the proposed model, wherein the 
activity of an individual element cannot depict the collective activity of many other 
elements. Instead, each element is taken to represent a single neuron-like entity and 
the graded projections of otherwise similar elements are utilised to construct a hierar- 
chical circuit model. The result is that nested clusters and their associated memory 
properties are organised in a complex and distributed manner at each level of the 
hierarchy. This notion includes but transcends the traditional sequential arrangement 
of clusters utilised in neural circuit models of memory, including the Dotsenko model, 
to describe successive levels of memory storage and recall. 

The following outline is adopted with respect to the proposed model. In 0 2, a 
hierarchical notation is introduced and the connections within and between levels are 
described. The model is formulated in a manner similar to that of the Hopfield model, 
but the emphasis is placed on the construction of nested neural clusters. This is 
achieved by means of the spatial dilution of connections from a fully interconnected 
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circuit and by the utilisation of graded phase lags. To allow the model generality, the 
hierarchical indices are maintained throughout the formulation. Following a discussion 
of the general model, the results of computer simulations performed on simple versions 
of the model are given in 0 3. The dependencies of hierarchical memory recall on 
structural variables, such as the fractions of various projection elements and their 
relative connection strengths, are delineated. In 0 4, the model is examined numerically 
using percolation techniques to develop a simple multilevel model of neurodegenerative 
processes. The results of the various studies are placed into perspective in 0 5 .  

2. Hierarchical cluster model of memory 

In the proposed scheme, nested clusters of neural elements are labelled. at the kth level 
by sequences of indices ik . . . i , ,  k = 1, .  . . , r, where ik denotes a particular cluster at 
the kth level, ikt l  at the next higher level, and so on, to the highest level, where i ,  = 1 
denotes the unique cluster at that level (figure 2). For convenience, the elements 
themselves are considered to be zeroth-level clusters, with one element per cluster. A 
cluster i l  . . . i ,  at the first level contains N,,,..,, elements, while a kth-level cluster ik . . . i ,  
contains Njk,,.,, clusters at the (k - 1)th level, 2 s  ks r. The full circuit is composed of 
N,, clusters at the ( r  - 1)th level, where the i ,  label is explicitly maintained even though 
i ,  = 1. 

The essentially binary state firing property of a neuron is represented by an Ising 
spin where Si,...i, = +l(-1) characterises the firing (resting) state of the ( i o . .  . i,)th 
element. Patterns of memory embedded in each of the first-level clusters are pi,.. .i ,  
states of the system { &c.,,ir}t:, ' r ,  p = 1, . . . , pi,.. . , , .  These patterns are random in so far 
as the &t...,, assume the values +l and -1 with equal probabilities. For convenience 
below, a memory state { & c , . , i r } t & r r  will also be represented below by the symbol ,I$.,,~~. 

Figure 2. Two second-level clusters i,. . . i, and jzi,. . . i, are shown schematically (shaded 
regions). Clusters i, . . . i,, j ,  i, . . . i, and j, j2i3 . . . i, are first-level clusters nested within 
these second-level clusters, and io. . . i, labels a single neural element. The number labelling 
a representative connection between two elements denotes the level of that connection. 
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The pairwise connections between all the elements within a first-level cluster are, 
as in the case of the Hopfield model (Hopfield 1982), given by the symmetric Hebb rule: 

The connections in equation (1) are referred to as first-level connections. Higher-level 
connections link elements in different first-level clusters and are, in general, asymmetric. 
To specify the nature of these connections, consider a single first-level cluster i l  . . . i,. 
Its elements can be divided into two types, namely those elements that form only 
first-level connections and those elements that, in addition to having first-level connec- 
tions with every other element in the cluster, also form connections with elements in 
other clusters. Elements of the latter type are referred to as projection elements. They 
can be subdivided into r - 1 disjoint subsets, where elements in each subset form 
connections with all the elements in other clusters separated from the ( il . . . i,)th cluster 
by a unique functional distance. The number of projection elements, expressed as a 
fraction of Nil [,, in the subset associated with the functional distance at the kth level 
is given by xj:)lr, k = 2, . . . , r. 

To illustrate the proposed patterns of higher-level connections, consider two first- 
level clusters i l  . . . i, and j ,  . . . j k - ,  ik . . . i, separated by a functional distance at the kth 
level, k >  1. Further suppose that elements io.. . i ,  and j , .  . . j k - l i k . .  . i, are the only 
projection elements in their respective first-level cluster subsets to partake in kth-level 
interactions between the two clusters. 
l/N,, I k - l l k  r , .  Between the clusters, element i o .  . . i, forms connections with all the 
{ j , .  . . j k - l i k . .  . i r } I o : l ~ h - ~ t k  l r ,  but only element j o .  . . jk - l ik . .  . i, has a possibly non-zero 
connection with io .  . . i, at the kth level. Similarly, element j o  . . ajk-lik. . . i, forms 
connections with elements {ioil . . . i r } T : l +  but not vice versa, with the exception of 
I o ,  . . I , .  

Connections formed by projection elements serve to correlate memory patterns 
occurring in different first-level clusters. At the kth level, 1 < k S r, the connection 
from j o  . . . j k - , i k .  . . i, to io . . . i, is written as 

- That is, xi,"'+ = l/Nll and X I ,  ( k )  J h - l r k  ,I - 

. .  N 

where the sum is taken over those pairs of first-level memory states, labelled by p and 
p ' ,  which are correlated by the connection; Y k  gives the average strength of the 
connections at the kth level relative to that of first-level connections, where y1 = 1. 
Only those J values where j ,  . . . j k - l  ik . . , i, is a projection element at the kth level will 
be potentially non-zero. Projection elements that form second-level connections, for 
example, link collections of first-level clusters together in such a manner as to correlate, 
via non-zero J values at the second level, certain combinations of first-level memory 
states. These combinations form second-level memories. While some first-level 
memories may contribute to several second-level memories, thereby introducing 
degeneracy into the higher levels, other first-level memories may not make any contribu- 
tion to second-level memory formation. The actual strength of the correlations between 
the first-level memories at the second level depends upon the number of second-level 
projection elements, expressed by the fraction x ~ ~ . ! . ~ ~ ,  and on the scaling factor y2 .  
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In general, kth-level connections correlate memory patterns that are present in 
different (k - 1)th-level clusters, forming kth-level memories. Each kth-level memory 
x ; . , , ~ , ,  p"= 1, . . . , P ~ ~ . . . ~ , ,  k = 2,  . . . , r, can be expressed as an ordered array 

x;::.i, = (XYiA ... i r ,  * * * 3 X $ c h i k . , , i , )  (3) 

of (k - 1)th-level memories. This formulation endows the circuit with a distributed 
memory that is hierarchically organised into r levels. 

To investigate the effects that multiple levels of connections have on associative 
memory recall, the network is evolved sequentially by discrete time steps. At each 
step, an element chosen at random assesses and modifies its alignment as required by 
its local field according to 

si a . . . i , ( t +  1)=sgn[h  ,... , , ( ? ) I .  (4) 

Here, the local field is 

where the first term in the sum gives the instantaneous local field contribution due to 
interactions within a first-level cluster, namely 

Nr* r"  

For l < k s r  

(7) 
N ' k  ' I  J h - ! ' A  ' r  

' ! : ) I r ( ' )  = ' *  ' J l a  I r . / o  J h - l l A  I,'/o / h - l I k  l&('-'k) ik - 1 # j k  - 1 
J k - 1 = 1  J o =  1 

where Tk gives the integer-valued phase lag due to propagation delays between elements 
separated by the functional distance at the kth level relative to those separated by the 
functional distance at the first level (where T~ = 0). It is expected that, in general, 
T k + l >  Tk, 1 4  k < r, in accord with the notion that functional distance incorporates a 
measure of neuro-anatomical distance in real circuits. Finally, IIo J t )  and el, I r  in 
equation ( 5 )  represent the time-dependent external field and fixed threshold potential 
of the ( i o  . . . i,)th element, respectively, and are set equal to zero in the discussion that 
follows. 

Despite the fact that elements are chosen sequentially in the evolution process 
given by equation (4), each step involves a field assessment of the entire network. 
State changes that result from this assessment tend to decrease a global function 
E =E;= ,  E'k', where 
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corresponds to the kth-level contribution, 1 6 k 6 r. Beginning with some initial sugges- 
tive configuration of element states SI, I,, memory recall occurs by the mechanism 
given in equation (4) until a local E minimum associated with a complete set of 
corresponding first-level memory states (one from each cluster) is reached. This 
property is basically assured in the r = 1 case when pl/  NI is less than approximately 
0.14 (Hopfield 1982, Amit et a1 1985). The memory states in each disjoint cluster are 
then, on average, orthogonal, and behave as attractors within a partitioned configuration 
space. The addition of higher-level connections alters the topology of the E surface 
within this space. In contrast to first-level connections, the asymmetry of higher-level 
connections causes E to lose its energy-like properties that are present when r = 1. If 
it is assumed that p, ,  ,,/ N,, Ir is small, so that memory states at the first level are indeed 
potentially stable states, then (k  > 1)-level connections can modify the attractor basins 
of the first-level memory states to produce intercluster memory correlations. In doing 
so, however, the stability of some first-level memory states may be lost. 

From equation (7), it is evident that the summations performed in determining a 
local higher-level field of the (io . . . i,)th element can, in principle, include many more 
contributions from elements located outside and successively further from the 
( il . , . i,)th cluster than from those elements residing within the cluster. In real circuits, 
such as the cortex, there is roughly an inverse relationship between the number of 
connections involving small populations of neurons and the proposed functional 
distance measure over which the neurons have synaptic connections. It is therefore 
assumed that the fractions of projection elements are graded such that ~ r , " + ~ ; '  < x!,"'~, , 
k = 2, . . . , r - 1. Moreover, xr?' I r  is assumed to be less than the fraction of elements 
in the (i, . . . i,)th cluster that are not projection elements. 

In addition to the constraints imposed on the patterns and the number of projection 
elements, it is assumed that the connection strengths at all the different levels are 
roughly of the same order. If this were not the case, an unusually small or large value 
of Y k  will distort the configuration space so as to effectively disconnect the circuit at 
the kth-level cluster or destroy memory correlations occurring at all but the kth level. 
To the authors' knowledge, there is no experimental evidence to suggest that some yk 
values are vastly different from other values or that the values are sequentially ordered. 
Furthermore, with respect to the graded phase lags, it is assumed that the Tk are small, 
so that the influence of all levels during simulated memory recall is actually present. 
In this way, the entire circuit operates in a cooperative and parallel manner, and 
memory association at higher levels need not occur only after lower-level memory 
recall has been completed. 

3. Numerical simulations 

Several numerical simulations have been performed on two- and three-level versions 
of the model to quantitatively assess the effect of hierarchical organisation on memory 
recall. Only results pertaining to zero phase lag studies are presented here; non-zero 
phase lag effects are currently under investigation. For r = 2, NI = 3, Ni,l = 30, xi:,) = x2, 
p1 = p i , ,  = 3, where i, = 1,2,3, and T~ = 0, correlations among the first-level memory 
states in different clusters were studied as functions of the fraction of projection 
elements x2 and the relative connection strength y 2 .  As expected, with pil l /Nil l  = 0.10, 
all nine first-level memory states in this two-level model were found to be stable when 
second-level connections were ignored. Second-level connections, however, gave rise 
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to second-level memories. Each of the three second-level memories consisted of a 
different triplet of first-level memory states, each such state being chosen at random 
from a different first-level cluster. Thus, three of 27 possible combinations of first-level 
memory states were pre-designated as second-level memories. Simulations were con- 
ducted by randomly cueing one of the clusters in a first-level memory state associated 
with one third of a second-level memory. Then, with the other two clusters in random 
initial states, the system was allowed to evolve according to equations (4)-(8) until a 
stable state was achieved. If the final state was one of the three second-level memory 
states, then a correct correlation of first-level memories was recorded; otherwise, it 
was not. An averaging was performed over initial states, cued memory states, and sets 
of first-level memory states. 

The dependence of second-level memory recall, expressed as a percentage correla- 
tion of the pre-selected first-level memories, on x2 and y2 under instantaneous field 
conditions is shown in figure 3. The range of correct correlations as a function of x2 
for selected values of 0 .56 ~ ~ 6 3 . 0  is 7.3 to 94% (figure 3(a)) .  Most of the gain in 
second-level memory association occurs for x2 < 0.4 when y2 3 1.0. This is not surprising 
in a two-level hierarchy containing similar neural clusters, since the number of terms 
in the field calculations scales as N,,l for h!ijl1, whereas for hj:)ll, the number of terms 
effectively increases by x2Nl N,, For values of y2 < 0.5, the recall ability of second-level 
memories deteriorates dramatically. 

Note that as x2 + 0, the circuit becomes dissociated into disjoint clusters, and 
intercluster correlations of first-level memory states can no longer be stored. The a 
priori probability that relaxation to first-level memory states in each cluster would 
correspond to a second-level memory is p , / p y ;  = 0.11, In practice, the correlation 
value was slightly less than this (0.07), since the evolution of the two non-cued clusters 
may result in spurious local E minima states that are not designated first-level memory 
states. This effect partially explains the less than perfect correlation of first-level 
memories seen as x2 + 1. In this limit, which also corresponds to the binary interaction 
case of an associative memory model proposed by Chen et a1 (1986), the relatively 
large number of second-level connections occasionally causes the cued memory state 
to become unstable. When random initial states of the non-cued clusters are associated 
with a deep valley on the E surface that excludes the cued memory state, the model 
tends to come to rest in either some combination of first-level memory states not 
representing a second-level memory or some other spurious state. 

Second-level memory recall is optimised in a range of y2 values that varies with 
x2 (figure 3(b)). When y2<0.2, the second-level effects of the model for x2S0.4 are 
essentially negligible. On the other hand, for y2 > 7, the second-level correlations tend 
to enslave the first-level events, causing the model to lose the fine detail of the E 
surface and the efficiency of its memory storage and recall capabilities. Relatively 
large variability (roughly 150/,) in second-level recall occurs in this range. A detailed 
theoretical account of why peak second-level associations occur for 2 < y2 < 5 and 
0.1 s x2 s 0.4 remains to be elicited. 

The y2-y3 surface associated with third-level memory recall is shown in figure 4 
in the case of r = 3, NI = 2, NI,, = 3, NI , ,~ ,  = 30, x!:?,, = x2 = 0.27, x::?,~ = x3 = 0.13, p1 = 
p l z l  = plllZl = 3, i l  = 1, 2, 3, i2 = 1, 2, and 7-2 = 7-3 = 0. In accordance with the development 
of the previous sections, the subsets of projection elements within a first-level cluster, 
that project over second- and third-level functional distances, were taken to be mutually 
exclusive. High third-level memory correlations in this instantaneous field simulation 
occur for values of 0.5 < y2 < 2 and 2 < y3 < 5 .  The actual shape of the ~ 2 - 7 3  surface 
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Figure 3. Results of second-level memory recall expressed as a percentage correct correla- 
tion among pre-designated first-level memories for r = 2, N ,  = 3, N , , ,  = 30, pI =pIII  = 3, 
T~ = 0. ( a )  Percentage correlation dependence on x2 for y 2  = 0.2, 0.5, 1.0, 2.0, 3.0; ( b )  
percentage correlation dependence on y2 for x2 = 0.1, 0.2, 0.3, 0.4. 

is largely a function of x2 and x3, as expected by the strong inter-dependence of x2 
and y 2  observed in the two-level model. 

4. A model of memory loss 

To this point, the model has been discussed in the context of hierarchical storage and 
associative recall of information. It might also be useful in understanding mechanisms 
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7-c 
5 

+ 
Figure 4. Third-level memory recall as a function of yz and y3 with r = 3, N ,  = 2, N,,, = 3, 
N,,,,,=30, x2=0.27, x3=0.13, p I = p ~ , , = p  ,,,* 1 = 3 ,  and T ~ = T ~ = O .  

of memory loss in some common neurodegenerative disorders in real circuits. 
Alzheimer’s disease, for example, primarily involves a selective destruction of large 
neurons, which comprise approximately 20% of the total cortical neuron population 
(Katzman 1986). These neurons project over considerable anatomical distances and 
are either partially or completely destroyed in the disease process. Small localised 
neurons remain relatively unaffected. It is estimated that in total, only 10% of all 
cortical neurons are actually lost in Alzheimer’s disease (Katzman 1986). However, 
the loss to higher brain behaviours is progressive and often devastating. 

The proposed model can be modified to simulate selective neuron loss and its 
associated effects on higher memory operations. The idea is that the selective loss of 
projection elements in the model destroys memory correlations between clusters, while 
preserving, in a relative sense, memory correlations within clusters. The loss of 
projection elements may be partial or complete. Partial destruction can be achieved 
by decreasing the numbers and relative strengths of the corresponding non-zero 
connections. Complete destruction can, if done randomly, correspond to a site percola- 
tion problem. 

As a simple example of how the loss of projection elements affects memory 
correlations, a selective site percolation on the projection elements of the two-level 
model in 0 3 was performed. A 50% selective loss of projection elements that reduced 
x2 from 0.2 to 0.1 and an additional reduction in y 2  on the remaining intercluster 
connections from 3.0 to 1.0 was found to decrease second-level memory recall from 
greater than 70% to approximately 10% (figure 5). The change in x2 and y 2  effectively 
dissociated the first-level clusters with respect to intercluster correlations; first-level 
memory properties, however, were essentially unaltered in the process. It is a straight- 
forward matter to generalise these results to multiple-level versions of the model. It 
should be noted that the effects due to selective element loss are to be distinguished 
from percolation phenomena occurring in collective neural networks containing similar 
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Figure 5. Percentage correlation as a function of y2  for r = 2 ,  NI = 3, N,,, = 30, p ,  = P , , ~  = 3, 
x2 = 0.2, T~ = 0. The curves give the control (full curve) and 50% projection element loss 
(broken curve) simulation results. A possible loss in second-level memory recall is shown 
(dotted curve). 

elements with homogeneous connection patterns. In such networks, a 10% loss of 
elements generally has minimal effects on memory loss. 

5. Conclusions 

While the proposed model possesses features that are suggestive of synaptic and 
memory organisation in some biological circuits, they are at best crude approximations 
to the complex architectures actually found in the mammalian brain. Nevertheless, it 
is argued that basic principles of hierarchical design associated with the heterogeneity 
of connection patterns within real and synthetic neural circuits are important to an 
understanding of the organisation of physiological responses, memory and memory 
loss. These principles can be formulated in terms of variables that have anatomical 
and physiological relevance and can be rigorously investigated in a manner similar to 
spin-glass studies. This line of investigation poses interesting theoretical challenges 
and may also have applications beyond those discussed in this paper. 
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